Unit - V

- 9. a) Show that travelling salesman problem is NP-complete.
 - b) Write short notes on following (any two)
 - i) NP hard Vs NP complete
 - ii) Vertex cover problem
 - iii) Hamiltonian path problem

Roll No

CS-505

B.E. V Semester

Examination, December 2013

Theory of Computation

Time: Three Hours

Maximum Marks: 70

RGPVONLINE.COM

Note: Attempt one question from each unit. All questions carry equal marks.

Unit - I

a) Consider the FA below and construct the, smallest DFA which accepts the same language.

b) Give mealy and Moore machines for the input from (0+1)*, if the inputs ends in '000', output A; if the input ends in '111', output B; otherwise output C.

$$L = \left\{ W \subset W^R / W \in (0+1)^* \right\}$$

7

Design a DFA that accepts the string such that number of zero divisible by five and number of one divisible by three.

Unit - II

- Write the CFG for the following language
 - i) $L = \{0^i 1^j 2^k / i = j \text{ or } j = k\}$
 - ii) $L = \{0^n 1^n / n \ge 1\}$
 - Convert the following grammar G into chomsky Normal Form.

$$S \rightarrow ABAC$$

 $A \rightarrow aA/ \in$

 $B \rightarrow bB/ \in$

 $C \rightarrow c$

OR

Convert the following grammar into GNF.

$$A_1 \rightarrow A_2 A_3$$

$$A_2 \rightarrow A_3 A_1 / b$$

$$A_3 \rightarrow A_1 A_2 / a$$

- Find regular grammars for the following languages on {a,b}.
 - i) $L = \{w: n_a(w) \text{ and } n_b(w) \text{ are both even} \}$
 - ii) $L = \{w: (n_a(w)-n_h(w)) \mod 3 = 1\}$

Unit - III

- 5. a) Design a PDA which accepts the language $L = \{W \in (a,b)^* / W \text{ has the equal number of } a \text{'s and } b \text{'s} \}.$
 - Explain closure properties of CFL's.

OR

Design PDA corresponding to given CFG

 $S \rightarrow aSa$

RGPVONLINE.COM $S \rightarrow bSb$

 $S \rightarrow c$

Explain pumping lemma for CFL. Prove that following language is CFL or not?

$$L = \{a^n b^n c^n / n \ge 1\}$$

Unit - IV

- What do you mean by recursive language. Prove that complement of a recursive language is recursive.
 - Build a Turing machine that accepts the language:

$$L = \{a^n b^{2n}\}$$

6.1

OR

- Design a turing machine to compute the function f(m,n) = m + n where m and n are non negative numbers.
 - What do you mean by Turing machine. Explain multiple tapes Turing machine.