[Total No. of Printed Pages :4

Roll No

EC - 502

B.E. V Semester

Examination, December 2012

Control Systems

Time: Three Hours

Maximum Marks: 70/100

Note: 1. Attempt any one question from each unit.

2. All questions carry equal marks.

Unit-I

- a) What is a control system? What are open and closed loop control systems? Enlist some applications of control systems.
 - b) Define transfer function. Determine the overall transfer function of the following closed loop control system.

a) Draw the signal flow graph for the following feedback control system.

EC - 502

PTO

b) What are the advantages of using feedback in control systems? What is regenerative feedback?

Unit-II

- 3. a) Analyse the system response of first order systems to unit ramp input.
 - Enlist and explain the different steady state, errors and error constants.

OR

4. a) A unity negative feedback control system has an open loop transfer function consisting of two poles, two zeros and a variable gain k, the zeros are located at -2 and -1 and the poles at 0.1 and +1.

Using Routh-Stability criterion, determine the range of values of k for which the closed loop system has 0. 1 or 2 poles in the right half S-plane.

b) List and explain the rules for sketching Root locus.

Unit-III

- 5. a) For the following feedback system find the value of k and α to satisfy the following frequency domain specifications $M_1 = 1.04$ and $W_{\tau} = 11.55$ rad/sec.
 - b) What are polar and inverse polar plots? How do they differ from Bode plot?

EC - 502 PTO

OR

6. a) State and explain Nyquist stability Criterion. Using Nyquist Criterion determine whether the following system is stable or not?

$$G(s) H(s) = \frac{1+4s}{s^2(1+s)(1+2s)}$$

b) A unity feedback system has the following open-loop frequency response.

(9)	2	3	4	5	6	8	10
$ G(j\omega) $	7.5	4.8	3.15	2.25	1.70	1.00	0.64
< <i>G</i> (/ω)	118	-130	- 140	-150	-157	-170	-180

Evaluate the gain margin and phase margin of the system.

Unit-IV

7. a) What are the approaches to the control system design problem?

What are the preliminary considerations of classical design? What is compensation? Name the different types of compensators.

b) A unity feedback control system has an open loop transfer

function of
$$G(s) = \frac{1}{s^2}$$
.

Design a suitable compensating network such that a phase margin of 45° is achieved without sacrificing system velocity error constant.

OR

8. a) Find the inverse z-transform of

$$\frac{4z^2 - 2z}{z^3 - 5z^2 + 8z - 4}$$

PTO

b) Solve the difference equation

$$c(k+2) + 3c(k+1) + 2c(k) = 4(k)$$
:

$$c(0) = 1 \cdot c(k) - 0$$
 for $k \le 0$

c(1) needed in the solution can be obtained by k = -1

$$c(1) = 3c(0) + 2c(-1) = r(-1) \text{ or } c(1) = -3.$$

Unit - V

 a) A feedback system is characterised by the closed loop transfer function

$$\tau(s) = \frac{s^2 + 3s + 3}{s^3 + 2s^2 + 3s + 1}$$

Draw a suitable signal flow graph and form construct a state model of the system.

b) For a system represented by the state

equation
$$x(t) = Ax(t)$$

The response of
$$x(t) = \begin{bmatrix} e^{-2t} \\ -2e^{-2t} \end{bmatrix}$$

When
$$x(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 and $x(t) = \begin{bmatrix} e^{-t} \\ -e^{-t} \end{bmatrix}$

When $x(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Determine the system matrix A and

the state transition matrix.

OR

- 10. Write short notes on:
 - a) State, state variables and state model.
 - b) Controllability and observability.

EC - 502

水水水水水水