www.rgpvonline.com

www.rgpvonline.com

EC - 505

www.rgpvonline.com

Roll No

EC - 505

B.E. V Semester

Examination, June 2016

Communication Network and Transmission Lines

Time: Three Hours

Maximum Marks: 70

www.rgpvonline.com

- Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each question are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.
- 1. a) What is meant by insertion loss?
 - b) A symmetric T section has an impedance of j 100Ω in each series arm and an impedance of j $400~\Omega$ in each shunt arm. Find the characteristic impedance.
 - c) Show under what condition a symmetrical lattice network with series arm impedances Z₁ and diagonal impedances Z₂ will be a constant resistance network.
 - d) Design a symmetrical 600Ω bridged T resistance attenuator to have an attenuation of 20dB.

OR

Determine the image impedance, iterative impedance and characteristic impedance of symmetrical two port network.

- 2. a) What is the function of the m-derived section in a composite filter?
 - b) What are the properties of band elimination filter?
 - Write the differences between Butterworth and Chebyshev Approximation.
 - d) Transform a low-pass filter to high pass filter using frequency transformation method.

OR

PTO

Design a composite low-pass filter with a cutoff frequency of 10KHz for a load resistance of 500 ohm. It should have high attenuation at 10.65KHz.

- 3. a) What are the conditions of positive real function?
 - b) Write the properties of L-C impedance functions.
 - Test whether the polynomial F(s) is Hurwitz, $F(s) = s^4 + s^3 + s^2 + 3s + 4$.
 - d) Synthesize the following functions in a Foster form. $(s^2+1) (s^2+8)/ s(s^2+4)$.

OR

Synthesize the following functions in Cauer form. $(s^3+2s^2+s+1)/(s^3+s^2+s)$.

- 4. a) What is meant by reflection loss and insertion loss in a transmission line?
 - b) Calculate the characteristic impedance of a transmission line if the following measurement have been made on the line $Z_{\infty} = 550 \angle -60^{\circ}\Omega$ and $Z_{\infty} = 500 \angle 30^{\circ}\Omega$.
 - List the parameters of coaxial cable line at high frequencies.
 - Derive the conditions required for a distortionless line.

OR

Derive the expressions for the voltage and current at any point on the transmission line in terms of propagation constant, length and characteristic impedance of the line.

- 5. a) State the reasons, which necessitate the use of stub matching in practice.
 - b) Define standing wave ratio.
 - c) What are the applications of the quarter wave and half wave line?
 - d) A 50 Ohm line feeds an inductive load Z = 35 + j35 Ohm. Design a double stub tuner to match this load to the line (make use of a Smith's chart).

OR

What are the special considerations of radio frequency lines? A radio frequency line with $Z_0 = 70$ Ohm is terminated by $Z_L = 115 - j80$ Ohm at $\lambda = 2.5$ m. Find the VSWR and the maximum and minimum line impedances.

EC - 505 *****

www.rgpvonline.com www.rgpvonline.com

www.rgpvonline.com