l'otal	No.	of Qi	testions	:5]
--------	-----	-------	----------	-----

[Total No. of Printed Pages :4]

Roll No.....

EC - 7201

B.E. VII Semester

Examination, December 2012

Satellite Communication (Elective)

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks:35

- Note: 1. Answer all the questions.
 - 2. Assume suitable data if any missing.
 - 3. Answer must be to the point.
 - 4. Use of Smith Chart is permitted.
- The semi major axis and the semi minor axis of an elliptical satellite orbit are 20000 Km and 160000 Km respectively.

 Determine the apogee and the perigee distances.

 (8)
 - b) Briefly explain Kepler's second law of planetary motion with necessary illustrations. (6)
 - c) List the various frequency bands being used in satellite communications. (6)

OR

- a) Find the velocity of a satellite at the perigee and apogee of its elliptical orbit in terms of the semi major axis a and the eccentricity e. (12)
- b) Consider two geostationary satellites at longitudes 75°E and 75°W. Can these two satellites see each other? (4)

PTO

EC - 7201

c)	Draw	the	geometry	of a	geostationary	link	showing
	elevat	ion,	azimuth an	đ ran	ge.		(4)

- a) Calculate the gain (in decibels) and 3-dB beamwidth (in degrees) for a dish antenna with the following diameters at 10 GHz (a) 3 ft and (b) 10ft. Determine the far field zone for both cases.
 - b) What are look angles and derive the expression for azimuth and elevation? (13)

OR

A parabolic dish antenna has a diameter of 1 m operating at 10GHz. The antenna efficiency is assumed to be 55% (a) calculate the antenna gain in dB (b) What is the 3-dB beam width in degrees? (c) What is the maximum power density in watts per square meter at a distance of 100m away from the antenna? The antenna transmits 10W. (d) What is the power density at 1.05° away from the peak? (20)

 a) Explain, why the low noise amplifier in a satellite receiving system is placed at the antenna end of the feeder cable.

(7)

- b) What is meant by tracking and pointing? Explain its significance.
- e) What do you understand by Monitoring and Controt?

(6)

OR

EC - 7201 PTO

 a) What is meant by input back off of a transponder? (4)
b) Explain how power is good at 1:	9)
 c) Distinguish between passive and active attitude contro 	
	7)
4) The details of a C-band GEO satellite are given below: (20	13
i) Transponder saturated output power = 20 W	,
ii) Output back off- 2 dB	
iii) Antenna gain on axis = 20 dB	
iv) Receiving earth station antenna gain at 4 GHz = 49.7 dB	
v) Receiving system noise temperature = 75K	
Calculate:	
 Diameter of the antenna at 4 GHz 	
 Saturated output power of the transponder in dBW 	
 Power transmitted by the transponder in dBW 	
iv) On axis EIRP of the transponder and antenna in dBW	
v) G/T ratio for the earth station.	
 vi) Path loss at 4GHz over the maximum path length for a GEO satellite link. 	
OR	
a) Determine the value of over all carrier to Noise ratio at the earth station in a satellite link if a signal is transmitted to a satellite transponder with carrier to noise ratio of 30dB and transponder transmit it with a ratio of 40dB.	
EC - 7201 (11) PTO	

- b) Starting from fundamentals derive the equation for the minimum value of EIRP in dBW, which the earth station must provide to produce a given flux density at the satellite for clear sky conditions.
- 5) a) With the help of block diagram describe the operation of VSAT system. (10)
 - b) Explain and discuss the block diagram of a DBS system.

(10)

OR

- a) Explain various application areas of VSAT (10)
- b) Write short note on: (10)
 - i) VSAT star network
 - ii) VSAT mesh network

水水溶涂米