http://www.rgpvonline.com

Total No. of Questions: 5]

[Total No. of Printed Pages: 2

Roll No

EX-302

B.E. III Semester

Examination, December 2016

Electro-Magnetic Theory

Time: Three Hours

Maximum Marks: 70

http://www.rgpvonline.com

- Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each question are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

- a) Write mathematical equations for gradient, curl, divergence in spherical co-ordinate systems.
 - b) Define electric field intensity.
 - What are equipotential surfaces? Derive a mathematical equation.
 - d) State and prove Gauss's law.

OR

Throughout a region of 8mm < r < 10mm a uniform volume charge density of $40\mu\text{c/m}^3$ is present. Let charge density is zero for 0 < r < 8mm. Find electric flux density at r = 10mm and at r = 20mm if there is no charge at r > 10mm.

Unit - II

- 2. a) Define electric dipole moment.
 - b) Derive Laplaces of Poisson's equation.
 - c) Derive equations for energy density in static electric field.
 - d) Derive Boundary conditions for static electric field.

OR

EX-302

PTO

http://www.rgpvonline.com

http://www.rgpvonline.com

[2]

Derive equations for capacitance of two concentric conducting spheres.

Unit - III

- 3. a) Write Biot-Savart's law.
 - b) Write Amperes circuital law.
 - c) Define magnetic flux density and magnetic field intensity.
 - d) Derive equations for magnetic boundary conditions.

OR

Derive equations for energy stored and energy density in a magnetic field.

http://www.rgpvonline.com

http://www.rgpvonline.com

Unit - IV

- 4. a) Define scalar magnetic potential.
 - b) Define vector magnetic potential.
 - c) Define self and mutual inductances.
 - d) Derive Maxwell's equation in
 - i) Differential form
 - ii) Integral form
 - iii) Free space
 - iv) Harmonically time varying fields

OR

Obtain the vector magnetic potential A in the region surrounding an infinitely long, straight and filamentary

current I or show that $\vec{A} = \frac{-\mu_o I}{2\pi} \log r \vec{a}_z$ in the magnetic

vector potential for a_z directional current I amp, flowing in an infinite long conductor where r is a distance perpendicular to the direction of the conductor.

Unit - V

- a) Define uniform plane waves.
 - b) What do you mean by polarization of waves?
 - Define surface impedance.
 - Derive mathematical equations for reflection at the surface of a conductive medium.

OR

State and prove poynting theorem.

EX-302