www.rgpvonline.com

OR

An amplifier has a bandwidth of 500 kHz and voltage gain of 100. What should be the amount of negative feedback if the bandwidth is extended to 5 mHz? What will be the new gain after negative feedback is introduced?

Unit - V

- 5. a) Draw the circuit diagram of a class B push pull power amplifier using npn transistor.
 - b) What do you mean by total harmonic distortion?
 - c) Explain the derating curve.
 - d) Discuss the thermal analogy of a power transistor.

OR

Distinguish between class A, B and C amplifier's.

Roll No

EX - 304

B.E. III Semester

Examination, June 2014

Electronic Devices and Circuits - I

Time: Three Hours

Maximum Marks: 70

- *Note:* i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each question are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

- 1. a) How a potential barrier is formed in a P.N. junction?
 - b) How does a LED emit light?
 - c) Why is the ripple factor of a half wave rectifier higher than that of full wave rectifier?
 - d) Explain the working of a tunnel diode. Draw its V.I. characteristics.

OR

www.rgpvonline.com

Design a zener regulator that will maintain an output voltage of 20V across 1 k Ω load when the input voltage is 30-50V. Assume zener knee current is negligible as compared to the load current. Calculate maximum power of the diode.

Unit - II

- 2. a) Explain the early effect of a bipolar transistor.
 - b) Define common base and common emitter current gains and state the relation between them.
 - c) Draw the transfer characteristics of an *n*-channel FET.
 - d) Explain with diagram the principle of operation of an *n*-MOSFET.

OR

Draw and explain the V-I characteristics of a UJT. Also mention its applications.

Unit-III

- 3. a) Since the gain of an emitter follower is less than unity, what is the use of having such an amplifier?
 - b) How do coupling and by pass capacitors affect the frequency response of an amplifier stage?

- What is the effect of the overall gain of cascading amplifiers?
- d) Derive the h-parameters of a CE amplifier.

OR

For a CE amplifier shown in fig.2, and given that h_{ie} = 1.1 k Ω ; h_{re} = 2.5 × 10⁻⁴; h_{fe} = 50; h_{oe} = 24 μ A/V. Calculate A_i , A_V , R_i , A_{ie} and A_{re} for R_I = 10k Ω .

Unit - IV

- 4. a) Explain the effect of negative feedback on gain and bandwidth of an amplifier.
 - b) Explain the Barkhausen condition for sustained sinusoidal oscillations.
 - Explain how voltage series feedback is provided in an emitter follower.
 - d) Discuss the work of a wein bridge oscillator.

EX-304