Roll No

EX-403

B.E. IV Semester

Examination, December 2012

Digital Electronics Logic Design - I

Time: Three Hours

Maximum Marks: 70/100

- *Note:* (1) Attempt any *one* from each unit.
 - (2) Assume any missing data, if any.

UNIT-I

- 1. (a) Convert the $(250.25)_{10}$ to base 4, 8, 16.
 - (b) Represent (8620)₁₀ in BCD and excess 03 code.
 - (c) Show 8 bit addition of the following decimal numbers in 2's complement

45 and 56

67 and -98

OR

2. (a) Realize following gates using minimum number of NAND gates:

AND, OR, NOR, X-OR

(b) Simplify the following Boolean frictions

$$ABC + \overline{A}BC + AB\overline{C} + A\overline{B}C$$

 $BC + A\overline{C} + AB + ACD$

UNIT-II

3. Design BCD to excess-3 code convertor circuit and draw the logic diagram.

OR

4. Design a full adder and derive the expression for output. Realize it with NAND gates.

UNIT-III

5. What is J-K flip-flop? Explain its NAND gate implementation.

OR

6. Design the 4-bit ring counter using D-flip flops.

UNIT-IV

- 7. (a) Differentiate between synchronous and asynchronous counters?
 - (b) Explain a synchronous 4-bit up-down counter.

OR

8. What is shift register? How a word is stored in a serial shift register.

UNIT-V

9. Explain the Binary weighted D/A converter.

OR

- 10. Write short note on any one of the following:
 - (a) PAL and PLA
 - (b) RAM and ROM
