Roll No.	******

EX-505(N)

B. E. (Fifth Semester) EXAMINATION, June, 2010 (New Scheme)

(Electrical and Electronics Engg. Branch)

POWER SYSTEM-I

[EX-505(N)]

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt any five questions. All questions carry equal marks.

- 1. (a) Write a short note on non-conventional source of electricity generation.
 - (b) Compare the performance of hydral and thermal power plants.
- 2. (a) Write the statement of Kelvin law of economy and derive an expression for most economic size of conductor.
 - (b) Write short notes on the following:
 - (i) Load curves
 - (ii) Base loads

rgpvonline.com

- (iii) Load factor
- (iv) Diversity factor
- (v) Demand factor

[3]

- 3. (a) Derive an expression for inductance of a three-phase transmission line with unsymmetrical spacing with solid round conductor.
 - (b) Calculate the inductance of a three phase transmission line with horizontal spacing between adjacent phase as 8 meters and radius of conducter as 1 cm. Assume solid round conductor.

- 4. (a) Draw the cross section of a 3 core belted cable and discuss the function of each part.
 - (b) Determine insulation resistance and capacitance of single core cable.
- 5. (a) Derive ABCD constants, of medium length transmission line using nominal-π model. Draw the phasor diagram also.
 - (b) A three-phase, 50 Hz, 150 km line has a resistance inductive reactance and shunt admittance of 1 ohm and 3×10^{-6} mho per km per phase respectively. If the line delivers 50 MW at 110 kV and 8 pf lagging determine the sending end voltage and current. Assume a nominal π model.
- 6. A 3-phase overhead line has a series impedance of 10 + j 30 ohm per phase. If the receiving end voltage is 132 kV and sending end voltage is 140 kV, draw the receiving end circle diagram and determine:
 - (a) The maximum real power which the line can supply and the load power factor for drawing this maximum power.

- (b) The capacity of shunt compensation equipment needed for supplying a load of 150 MVA at 8 pf lagging and power angle for this load condition
- (c) The capacity of shunt compenisation needed to maintain the above voltage under no-load condition.
- (d) The unity pf load which the line can supply with voltages at above values
- 7. (a) Describe the construction of suspension type insulator. How will you determine its string efficiency for n number of discs?
 - (b) An insulator string for 33 kV line has 4 discs. The shunt capacitance between each joint and metal work is 10% of the capacitance of each disc. Find the voltage across the different discs and string efficiency.
- 8. Write short notes on any two of the following:
 - (a) Comparison of cable and overhead line
 - (b) Methods of improving string efficiency
 - (c) Kelvin law and its limitation
 - (d) Influence of voltage on cost and efficiency of transmission
 - (e) Bundle conductor
 - (f) Series and shunt compensation
 - (g) Type of towers

rgpvonline.com